@Override
public Signal.SignatureData callHSM(byte[] dataToSign, HSMPass move) {
// Create the SignRequest for AWS KMS
var signRequest =
SignRequest.builder()
.keyId(keyID)
.message(SdkBytes.fromByteArray(dataHash))
.messageType(MessageType.DIGEST)
.signingAlgorithm(SigningAlgorithmSpec.ECDSA_SHA_256)
.construct();
// Signal the information utilizing AWS KMS
var signResult = kmsClient.signal(signRequest);
var signatureBuffer = signResult.signature().asByteBuffer();
// Convert the signature to byte array
var signBytes = new byte[signatureBuffer.remaining()];
signatureBuffer.get(signBytes);
// Confirm signature osn KMS
var verifyRequest =
VerifyRequest.builder()
.keyId(keyID)
.message(SdkBytes.fromByteArray(dataHash))
.messageType(MessageType.DIGEST)
.signingAlgorithm(SigningAlgorithmSpec.ECDSA_SHA_256)
.signature(SdkBytes.fromByteArray(signBytes))
.construct();
var verifyRequestResult = kmsClient.confirm(verifyRequest);
if (!verifyRequestResult.signatureValid()) {
throw new RuntimeException("KMS signature will not be legitimate!");
}
var signature = CryptoUtils.fromDerFormat(signBytes);
return Signal.createSignatureData(signature, move.getPublicKey(), dataHash);
}
NOTE!
With a purpose to use this correctly, the kind of key spec created in AWS KMS should be ECC_SECG_P256K1. That is particular to the crypto house, particularly to EVM. Utilizing every other key will lead to a mismatch error when the information signature is created.
Instance
Here’s a brief instance of the best way to name the callHSM methodology from the library:
public static void essential(String[] args) throws Exception {
KmsClient shopper = KmsClient.create();
// extract the KMS key
byte[] derPublicKey = shopper
.getPublicKey((var builder) -> {
builder.keyId(kmsKeyId);
})
.publicKey()
.asByteArray();
byte[] rawPublicKey = SubjectPublicKeyInfo
.getInstance(derPublicKey)
.getPublicKeyData()
.getBytes();
BigInteger publicKey = new BigInteger(1, Arrays.copyOfRange(rawPublicKey, 1, rawPublicKey.size));
HSMPass move = new HSMPass(null, publicKey);
HSMRequestProcessor signer = new HSMAwsKMSRequestProcessor(shopper, kmsKeyId);
signer.callHSM(information, move);
}
Conclusion
AWS KMS, with its built-in HSM performance, gives a strong resolution for securely managing and signing cryptographic transactions. Regardless of preliminary challenges confronted by customers in integrating AWS KMS with Hyperledger Web3j, the introduction of the HSMAwsKMSRequestProcessor class has made it simpler to undertake and implement. This ready-to-use resolution simplifies interactions with AWS KMS, permitting customers to securely signal information and transactions with minimal configuration. By leveraging this software, organizations can improve their safety posture whereas benefiting from the comfort of AWS’s cloud-native HSM capabilities.
You might also like
More from Web3
Dogecoin Down 23% This Week as Bitcoin and XRP Stumble After Surges
It has been a tough few days for crypto costs after a number of weeks of upward strides, with …
United States of Bitcoin? These States Are Considering BTC Reserves
Donald Trump and his political allies are plugging away at plans to stockpile Bitcoin at a nationwide stage within …
AI Won’t Tell You How to Build a Bomb—Unless You Say It’s a ‘b0mB’
Keep in mind once we thought AI safety was all about refined cyber-defenses and sophisticated neural architectures? Nicely, Anthropic's …